skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schröder, Tobias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Pulsar timing array (PTA) searches for gravitational waves (GWs) aim to detect a characteristic correlation pattern in the timing residuals of galactic millisecond pulsars. This pattern is described by the PTA overlap reduction function (ORF) Γ a b ( ξ a b ) , which is known as the Hellings–Downs (HD) curve in general relativity (GR). In theories of modified gravity, the HD curve often receives corrections. Assuming, e.g. a subluminal GW phase velocity, one finds a drastically enhanced ORF in the limit of small angular separations between pulsaraand pulsarbin the sky, ξ a b 0 . In particular, working in harmonic space and performing an approximate resummation of all multipole contributions, the auto correlation coefficientΓaaseems to diverge. In this paper, we confirm that this divergence is unphysical and provide an exact and analytical expression forΓaain dependence of the pulsar distanceLaand the GW phase velocity v ph . In the GR limit and assuming a large pulsar distance, our expression reduces to Γ a a = 1 . In the case of subluminal phase velocity, we show that the regularization of the naive divergent result is a finite-distance effect, meaning thatΓaascales linearly withfLa, wherefis the GW frequency. For superluminal phase velocity (subluminal group velocity), which is relevant in the case of massive gravity, we correct an earlier analytical result forΓab. Our results pave the way for fitting modified-gravity theories with nonstandard phase velocity to PTA data, which requires a proper understanding of the auto correlation coefficientΓaa
    more » « less
    Free, publicly-accessible full text available December 12, 2025
  2. null; null (Ed.)
    We review Affect Control Theory (ACT), a mathematically formalized theory that integrates sociological insights about the symbolic construction of the social order with psychological knowledge about cognitive-affective mechanisms, as a basis for equipping computational agents in social simulations with a sense of sociality. After explaining theoretical foundations and describing previous applications of ACT at the dyadic and group level, we describe a case study from an ongoing research project aimed at understanding self-organized online collaboration in software development with ACT-based social simulations. 
    more » « less
  3. Abstract The NANOGrav 15 yr data provide compelling evidence for a stochastic gravitational-wave (GW) background at nanohertz frequencies. The simplest model-independent approach to characterizing the frequency spectrum of this signal consists of a simple power-law fit involving two parameters: an amplitudeAand a spectral indexγ. In this Letter, we consider the next logical step beyond this minimal spectral model, allowing for arunning(i.e., logarithmic frequency dependence) of the spectral index, γ run ( f ) = γ + β ln f / f ref . We fit this running-power-law (RPL) model to the NANOGrav 15 yr data and perform a Bayesian model comparison with the minimal constant-power-law (CPL) model, which results in a 95% credible interval for the parameterβconsistent with no running, β 0.80 , 2.96 , and an inconclusive Bayes factor, B RPL versus CPL = 0.69 ± 0.01 . We thus conclude that, at present, the minimal CPL model still suffices to adequately describe the NANOGrav signal; however, future data sets may well lead to a measurement of nonzeroβ. Finally, we interpret the RPL model as a description of primordial GWs generated during cosmic inflation, which allows us to combine our results with upper limits from Big Bang nucleosynthesis, the cosmic microwave background, and LIGO–Virgo–KAGRA. 
    more » « less
  4. The computational modeling of groups requires models that connect micro-level with macro-level processes and outcomes. Recent research in computational social science has started from simple models of human behavior, and attempted to link to social structures. However, these models make simplifying assumptions about human understanding of culture that are often not realistic and may be limiting in their generality. In this paper, we present work on Bayesian affect control theory as a more comprehensive, yet highly parsimonious model that integrates artificial intelligence, social psychology, and emotions into a single predictive model of human activities in groups. We illustrate these developments with examples from an ongoing research project aimed at computational analysis of virtual software development teams. 
    more » « less
  5. Humans are adept in simultaneously following multiple goals, but the neural mechanisms for maintaining specific goals and distinguishing them from other goals are incompletely understood. For short time scales, working memory studies suggest that multiple mental contents are maintained by theta-coupled reactivation, but evidence for similar mechanisms during complex behaviors such as goal-directed navigation is scarce. We examined intracranial electroencephalography recordings of epilepsy patients performing an object-location memory task in a virtual environment. We report that large-scale electrophysiological representations of objects that cue for specific goal locations are dynamically reactivated during goal-directed navigation. Reactivation of different cue representations occurred at stimulus-specific hippocampal theta phases. Locking to more distinct theta phases predicted better memory performance, identifying hippocampal theta phase coding as a mechanism for separating competing goals. Our findings suggest shared neural mechanisms between working memory and goal-directed navigation and provide new insights into the functions of the hippocampal theta rhythm. 
    more » « less
  6. Abstract The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons. 
    more » « less